Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Speleothem δ18O records from central southern China have long been regarded as a key benchmark for Asian summer monsoon intensity. However, the similar δ18O minima observed among precession minima and their link to seasonal precipitation mixing remains unclear. Here, we present a 400,000-y record of summer precipitation δ18O from loess microcodium, which captures distinct precession cycles similar to those seen in speleothem δ18O records, particularly during glacial periods. Notably, our microcodium δ18O record reveals very low-δ18O values during precession minima at peak interglacials, a feature absent in speleothem δ18O records from central southern China. This discrepancy suggests that the mixed summer and nonsummer climatic signals substantially influence the speleothem δ18O records from central southern China. Proxy-model comparisons indicate that the lack of very low-δ18O values in speleothem δ18O records is due to an attenuated summer signal contribution, resulting from a lower summer-to-annual precipitation ratio in southern China at strong monsoon intervals. Our findings offer a potential explanation for the long-standing puzzle of the absence of 100- and 41-kyr cycles in speleothem δ18O records and underscore the critical role of seasonality in interpreting paleoclimatic proxies in central southern China. These insights also have broader implications for interpreting speleothem δ18O records globally, advocating for a more multiseason interpretive framework.more » « less
-
Abstract A 230 Th/U-dated stalagmite from Hulu Cave was analyzed for δ 18 O, δ 13 C, and trace elements. A ~10-yr-resolution δ 18 O record, spanning 51.7–42.6 ka, revealed Dansgaard-Oeschger (DO) events 14 to 11. A similar rapid transition and synchronous timing of the onset of DO 12 is evident between the Greenland and Hulu Cave records, which suggests a common forcing mechanism of DO cycles in the North Atlantic and monsoonal region of Asia. Centennial-scale monsoonal oscillations in the cave δ 18 O record are indicative of hydroclimatic instability during interstadials. After removing the signals of remote moisture sources, the proportion of moisture from nearby sources is found to be higher during stadials than during interstadials. To explain this, we propose that the movement of the westerly jet is an important control on the balance of nearby and distant moisture sources in East Asia. In addition, the records of δ 13 C and trace element ratios, which are proxies of local environmental changes, resemble the δ 18 O record on the scale of DO cycles, as well as on even shorter timescales. This suggests that hydrological processes and biological activity at the cave site respond sensitively to the monsoonal changes.more » « less
-
Paired measurements of14C/12C and230Th ages from two Hulu Cave stalagmites complete a precise record of atmospheric14C covering the full range of the14C dating method (~54,000 years). Over the last glacial period, atmospheric14C/12C ranges from values similar to modern values to values 1.70 times higher (42,000 to 39,000 years ago). The latter correspond to14C ages 5200 years less than calibrated ages and correlate with the Laschamp geomagnetic excursion followed by Heinrich Stadial 4. Millennial-scale variations are largely attributable to Earth’s magnetic field changes and in part to climate-related changes in the oceanic carbon cycle. A progressive shift to lower14C/12C values between 25,000 and 11,000 years ago is likely related, in part, to progressively increasing ocean ventilation rates.more » « less
An official website of the United States government

Full Text Available